A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda.

نویسندگان

  • T E Numrych
  • R I Gumport
  • J F Gardner
چکیده

The bacteriophage P22-based challenge-phage system was used to study the binding of Xis and FIS to their sites in attP of bacteriophage lambda. Challenge phages were constructed that contained the X1, X2, and F sites within the P22 Pant promoter, which is required for expression of antirepressor. If Xis and FIS bind to these sites in vivo, they repress transcription from Pant, allowing lysogenization to occur. Challenge phages carrying the XIX2F region in either orientation exhibited lysogenization dependent on both Xis and FIS. Neither Xis nor FIS was capable of functioning by itself as an efficient repressor in this system. This was the first time challenge phages have been constructed that require two different proteins bound simultaneously to act as a repressor. Mutations in the X1, X2, and F sites that inhibit Xis and FIS from binding were isolated by selecting mutant phages that still expressed antirepressor synthesis in the presence of Xis and FIS. DNA sequence analysis of the mutants revealed 38 unique mutations, including single-base-pair substitutions, multiple-base-pair changes, deletions, and insertions throughout the entire X1, X2, and F regions. Some of the mutations verified the importance of certain bases within the proposed consensus sequences for Xis and FIS, while others provided evidence that the DNA sequence outside of the proposed binding sites may affect the binding of the individual proteins or the cooperativity between them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda

Triple-base changes were made in each of the five Integrase (Int) arm-type binding sites of bacteriophage lambda. These triple changes, called ten mutants, were compared with single-base changes (hen mutants) for their effects on integrative and excisive recombination. The presence of ten or hen mutations in the P1, P'2, or P'3 sites inhibited integration, but the ten P'3 mutant was 10-fold mor...

متن کامل

Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation.

Lambda integrase (Int) is a heterobivalent DNA-binding protein that together with the accessory DNA-bending proteins IHF, Fis, and Xis, forms the higher-order protein-DNA complexes that execute integrative and excisive recombination at specific loci on the chromosomes of phage lambda and its Escherichia coli host. The large carboxyl-terminal domain of Int is responsible for binding to core-type...

متن کامل

Purification and characterization of bacteriophage P22 Xis protein.

The temperate bacteriophages lambda and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. lambda and P22 Xis proteins are both small proteins (lambda Xis, ...

متن کامل

Xis and Fis proteins prevent site-specific DNA inversion in lysogens of phage HK022.

HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xi...

متن کامل

Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex.

Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal alpha-helix of Xis is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 173 19  شماره 

صفحات  -

تاریخ انتشار 1991